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1. Introduction 

The need to effectively and efficiently solve linear systems of equations is an important 
computational challenge affecting a wide range of applications in scientific computing from solid 
mechanics and quantum mechanics to climate modeling and computational geometry. A linear 
system of equations can be represented as 

௝ݔ௜௝ܣ  ൌ ܾ௜ (1) 

where Aij is the coefficient matrix, bi is the right-hand side vector, and xi is the vector of 
unknowns to be solved for. In this report, we solve the linear system of equations related to the 
three-dimensional (3-D) linear elastostatic boundary value problem (BVP). The focus on 3-D 
linear elasticity is motivated by our effort to accurately capture free-surface effects in discrete 
dislocation dynamics (DDD) simulations. This can be achieved by coupling a DDD simulator for 
bulk material (Arsenlis et al., 2007) to a finite element method (FEM) code that computes the 
image stress field resulting from the presence of free surfaces at each timestep. We have 
developed a massively parallel FE code, FED3, to perform the free-surface computations (Crone 
et al., 2013). A typical DDD simulation in bulk will require many timesteps (on the order of 1e5 
to 1e6) to reach the desired loading conditions. To achieve similar simulation time scales with 
free surfaces and highly refined FEM meshes requires extremely efficient and scalable linear 
solvers to compute image stresses with a wall-clock time of a few seconds (s) or less. The keys 
to reducing solve time is to minimize parallel communication, computational expense per 
iteration, and number of iterations. 

In this discrete dislocation dynamics-finite element method (DDD-FEM) coupling application, 
the coefficient matrix (stiffness matrix) remains constant from one timestep to the next and only 
the right-hand side vector (due to changing boundary conditions) needs to be updated. Therefore, 
the setup time for the linear solver and preconditioner only occur on the first solve. For this 
reason, we restrict our solver performance study to the time spent solving the system of equation 
and ignore the setup costs—except in the case of direct solvers where the setup cost can become 
prohibitively expensive for large systems. 

In this report, we present a brief description of the problem we are solving as well as the linear 
solvers and preconditioners employed for this study. We go on to present the performance results 
for each of the solver – preconditioner combinations for various system sizes in terms of both 
serial performance and parallel scalability. We conclude by comparing the relative advantages 
and drawbacks of the solver – preconditioner options. We emphasize that while we restrict our 
evaluation to solving 3-D linear elasticity in this report, the results from this study can be applied 
to a wide range of applications where the solution of a linear system of equations is required. 
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2. Linear Elasticity Problem Statement 

The formal statement of the 3-D linear elastostatic BVP is as follows (using index notation with 
Einstein summation convention): 

௜௝,௝ߪ  ൌ 0	݅݊	Ω (2) 

௜ݑ  ൌ  ௨ (3)߁	݊݋	௢ݑ

௜௝ߪ  ௝݊ ൌ ௢ܶ	݊݋	߁்  (4) 

where σij is the stress tensor, σij,j is the divergence of the stress tensor, ui is the displacement field, 
uo is the prescribed displacement field on the surface Γu with Dirichlet boundary conditions, nj 

and To are the surface normal and prescribed tractions, respectively, on surface ΓT with Neumann 
boundary conditions, and Ω is the volume of the linear elastic body. The stress tensor is defined 
in terms of the infinitesimal strain tensor (εkl) by the generalized Hookes law: 

௜௝ߪ  ൌ ௜௝௞௟߳௞௟ܥ    (5) 

where Cijkl are the elastic coefficients and εkl can be further defined in terms of the displacement 
field: 

௞௟ߝ  ൌ
௨ೖ,೗ା௨೗,ೖ

ଶ
 (6) 

Substituting equation 5 and 6 into equation 2 and converting to the weak form (see Hughes, 2000 
for detailed derivation of the weak form and implementation into the FEM framework), we 
recover equation 1 where Aij is the stiffness matrix, xj is replaced by the unknown displacement 
field values (uj), and bi is the force vector containing the contributions of the Dirichlet and 
Neumann boundary conditions. The resulting stiffness matrix is symmetric positive definite 
(SPD); therefore, we focus our study on conjugate gradient (CG) solvers, which are best suited 
for SPD matrices (Shewchuk, 1994). 

 

3. Description of Linear Solvers and Preconditioners 

For this work, we examine the performance of three open-source, parallel linear solver libraries 
and a fourth linear CG solver developed at the U.S. Army Research Laboratory (ARL). The first 
open-source library is Hypre, a suite of parallel iterative solvers and preconditioners developed 
by Lawrence Livermore National Laboratory (LLNL) (Falgout and Yang, 2002). The second 
open-source library is the Portable, Extensible Toolkit for Scientific Computation (PETSc), 
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which is a combination of data structures, linear solvers, and preconditions developed by 
Argonne National Laboratory (ANL) (Balay, 2013). PETSc has a built-in interface for many 
external solver packages, including the third solver library—the Multifrontal Massively Parallel 
Sparse Direct Solver (MUMPS)—which is a parallel direct solver (Amestoy et al., 1998). The 
fourth linear solver is a matrix-free iterative CG solver developed at ARL during testing. The 
matrix-free form reduces the parallel communication and therefore displays excellent parallel 
scalability. However, it is much less efficient than the other libraries and only has a simple 
Jacobi preconditioner implemented. It is included as a benchmark when examining parallel 
scalability.  

A major benefit of PETSc and Hypre is the suite of available preconditioners that can be used to 
reduce the number of solver iterations. Table 1 contains a list of all preconditioners used for each 
solver. Additional information about each preconditioner can be found in the reference manuals 
packaged with each library. 

Table 1. List of solver packages and corresponding preconditoners used in this work. 

Library/Solver Preconditioner 

PETSc 

None 
Jacobi 

Block Jacobi 
Additive Schwarz (ASM) 

Geometric Algebraic Multigrid (GAMG) 
Incomplete LU Factorizationa (ILU) 

Incomplete Cholesky Factorizationa (ICC) 

Successive Over Relaxationa (SOR) 

Hypre 

Jacobi 
Algebraic Multigrid (MLI) 

Algebraic Multigrid (AMG) 

Parasails 

MUMPS None (Direct Solve) 
Matrix-Free CG Jacobi 

aIndicates serial preconditioners. 

 

4. Results and Discussion 

To evaluate the performance of the various linear solvers and preconditioners, we model uniaxial 
tension of an elastic brick. The X, Y, Z dimensions of the brick are 21.8 × 8.175 × 8.175 μm, 
with a distributed force in the X direction of 100 MPa/m2. Three quadratic tetrahedral meshes are 
created to study the effect of system size on solver performance. Table 2 contains the respective 
sizes of each mesh. 
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Table 2. Number of elements and total degrees of freedom (DOF) for 
the three meshes used in this work. 

Mesh Elements DOFs 
1 9279 42,057 
2 72,120 308,661 
3 5,284,709 22,414,125 

 
All simulations have been carried out on the Pershing Supercomputer at the ARL Department of 
Defense (DOD) Supercomputing Resource Center (ARL-DSRC). Pershing is an IBM* iDataPlex 
containing two Intel† Sandy Bridge 8-core processors and 32 GB of memory per node. The 
compute nodes are interconnected by FDR-10 InfiniBand.‡ 

4.1 Iterative Solvers 

We begin by comparing the iterative solver times for meshes no. 1 and no. 2 in serial to establish 
the optimal solvers when parallel communication is not involved. The solve time and number of 
iterations for each solver is measured relatively to the PETSc solver with no preconditioner. 
Without preconditioning, mesh no. 1 solves in 7.5 s and 1152 iterations, while mesh no. 2 solves 
in 145 s and 2341 iterations. The relative improvements of the various solver – preconditioner 
combinations are included in figures 1 and 2. 

There are two timings for the Hypre – AMG to demonstrate the sensitivity of the preconditioning 
parameters parameters. Other works have shown AMG to be an efficient method for solving 
linear elasticity (Baker et al., 2009), but the performance is closely coupled to the selection of 
proper parameters. The Hypre – AMG preconditioner (BoomerAMG) provides a convenient 
interface for selecting the appropriate parameters. As shown in figure 1, by using the default 
parameters, BoomerAMG takes approximately 30% longer than PETSc – None to solve. 
However, after performing a parametric study on the BoomerAMG parameters, shown in table 2, 
we are able to reduce the solver time by a factor of three. The set of parameters determined from 
the study in table 2 are labeled as “serial optimized params” in figures 1 and 2. The label 
“parallel optimized params” in figure 2 is determined through a second parametric study, which 
optimized the BoomerAMG parameters for parallel performance. Further details of this study are 
included later in this section. For a description of the complete set of BoomerAMG parameters, 
we refer the reader to the Hypre manuals included with the library.  

The iterative solver – preconditioner combinations with the shortest solver time for both mesh 
no. 1 and no. 2 are the PETSc – Block Jacobi, PETSc – ILU, and Hypre – AMG. While the 
relative reduction in solver time is constant between meshes no. 1 and no. 2 for PETSc – Block 
Jacobi and PETSc – ILU, the reduction in solver time for Hypre – AMG improves as we increase 

                                                 
* IBM is a registered trademark of the International Business Machines (IBM) Corporation, United States. 
† Intel is a registered trademark of the Intel Corporation. 
‡ InfiniBand is a registered trademark of the InifiniBand Trade Association (IBTA). 
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the system size. These results suggest that Hypre – AMG has the best performance for serially 
solving a system of equations when the AMG parameters have been carefully selected. 

 

 

Figure 1. Relative serial performance of various solver – preconditioner combinations for mesh no.1. Values 
are compared to the PETSc solver without preconditioning. 
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Figure 2. Relative serial performance of various solver – preconditioner combinations for mesh no. 2. Values 
are compared to the PETSc solver without preconditioning. 

 

Table 3. Parametric study of the Hypre – AMG parameters to optimize serial performance. The bottom row 
corresponds to the final set of parameters referred to as “serial optimized params” throughout this work. 
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Default (30) falgout Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 1 Default (1) No default 183 178
Default (30) falgout Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 1 Default (1) Yes default 393 286
Default (30) falgout Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) No default 70 66
Default (30) falgout Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 51 38
Default (30) falgout Default (local) hybridsym 2 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 42 48
Default (30) ruge Default (local) hybridsym 2 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 42 48
Default (30) Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 52 36
Default (30) ruge3c Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 51 37
Default (30) pmis Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 82 51
Default (30) hmis Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 78 48

15 Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 52 37
45 Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 52 67

Default (30) Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 1 3 Default (1) Yes default 51 36
Default (30) Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.8 3 Default (1) Yes default 54 38
Default (30) Default (CLJP) global hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 52 38
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Before examining the parallel efficiency of the various solvers and preconditions, we perform a 
second parametric study on the AMG parameters to determine the ideal set of parameters for 
parallel solves, as mentioned above. Figure 3 plots the solve time with increasing number of 
processing elements (PE) for the Hypre – Jacobi and Hypre – AMG using the “serial optimized 
params.” These results show very poor scalability for AMG, with the solve time on eight PEs 
taking longer than on two PEs. We observe a crossover point at about 10 PEs where the AMG 
precondition takes more time than the Jacobi preconditioner for higher PE counts. To identify the 
ideal parameters for parallel solvers, we examine the solve time of mesh no. 2 on one PE and  
32 PEs for various parameter combinations, as shown in table 4. The final set of parameters, 
listed on the last row of table 4 reduces the solve time on 32 PEs from 125.6 s for the serial 
optimized parameters to 4.9 s, a factor of 25 reduction in solve time. The parallel optimized 
parameters result in an increase to the solve time by a factor of two for one PE; however, with 
four or more PEs, the parallel parameters result in a lower solve time. The increased solve time 
with 128 PEs indicates that further parametric studies may be necessary to further optimize the 
parallel performance of the Hypre – AMG preconditioner. However, we aim to have 
approximately 5000–10,000 DOFs per PE for our final application, and therefore do not intend to 
distribute a mesh with the size of mesh no. 2 across more than approximately 64 PEs. 

 

 

Figure 3. Parallel performance of Hypre – Jacobi and Hypre – AMG for two sets of AMG parameters. Ideal 
refers to the solve time of Hypre – Jacobi assuming 100% parallel efficiency. 
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Table 4. Parametric study of the Hypre – AMG parameters to optimize parallel performance. The bottom row 
corresponds to the final set of parameters referred to as “parallel optimized params” throughout this work. 

 
 

Using the “parallel optimized params” for Hypre – AMG, we compare the parallel scalability of 
Hypre – AMG to other solver – preconditioner combinations with mesh no. 2 (figure 4) and 
mesh no. 3 (figure 5). In figure 4 we observe similar parallel scalability performance for each of 
the four solver – preconditioner combinations. The shortest solve times resulted from using 
Hypre –AMG and Hypre – Parasails, which have nearly identical timings along all PE counts. 
We observe nearly ideal scalability when increasing from one PE to eight PEs, but see the 
scalability drop to about 32% parallel efficiency (observed speed-up divided by ideal speed-up) 
when increasing to 64 PEs. Since the reduced parallel efficiency is observed across all solver – 
preconditioner combinations, it suggests that mesh no. 2 does not have enough DOFs to 
efficiently distribute across 64 PEs.  

 

# Iterations
Solve 

Time [s]
# Iterations

Solve 
Time [s]

Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 81 41.3 2889 125.6 1.03
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) No default 94 73.5 197 12.6 18.20
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 50 62.5 102 9.5 20.62
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.3 3 Default (1) No default 37 77.5 165 21.7 11.17
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.45 3 Default (1) No default 41 62.8 154 15.5 12.63
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.75 3 Default (1) No default 66 63.9 143 11.0 18.17
Default (30) cljp global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 50 61.9 102 9.1 21.30
Default (30) ruge global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 51 59.3 225 23.1 8.01
Default (30) falgout global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 50 59.5 136 13.3 13.98
Default (30) ruge3c global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 51 59.1 271 25.4 7.27
Default (30) pmis global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 144 97.2 924 43.0 7.06
Default (30) hmis global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 127 85.9 703 34.7 7.74
Default (30) cljp global hybridsym 1 0.1 Default (1.0) 0.6 3 Default (1) No default 100 159.3 100 11.2 44.61
Default (30) cljp global hybridsym 1 1 0.1 0.6 3 Default (1) No default 86 136.4 92 9.8 43.64
Default (30) cljp global hybridsym 1 1 0.5 0.6 3 Default (1) No default 54 86.3 57 5.1 52.76
Default (30) cljp global hybridsym 1 1 0.75 0.6 3 Default (1) No default 51 81.0 56 5.3 48.10
Default (30) cljp global hybridsym 1 1 0.85 0.6 3 Default (1) No default 50 79.6 65 6.0 41.28
Default (30) cljp global hybridsym 1 1 0.25 0.6 3 Default (1) No default 62 97.4 66 6.3 48.59
Default (30) cljp global hybridsym 1 1 0.65 0.6 3 Default (1) No default 52 82.9 55 4.9 52.41
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Figure 4. Parallel performance of various solver – preconditioner combinations with mesh no. 2. Ideal refers to the 
solve time of Hypre – AMG assuming 100% parallel efficiency. 

When increasing the number of DOFs to over 22 million with mesh no. 3 (figure 5), we observe 
that excellent parallel efficiency can be achieved on most of the solver – preconditioner 
combinations for up to 1024 PEs. Despite having the worst parallel efficiency, Hypre – AMG 
has the smallest solve times across all PE counts. It appears that at some PE count above 1024, 
Hypre – Jacobi and/or PETSc – Block Jacobi may result in lower solve times than Hypre – 
AMG; however, further studies would be required for confirmation. We also note that Hypre was 
the only solver capable of solving mesh no. 3 on 64 PEs within the allotted time of one hour (h). 
The Linear CG solver ran out of time before completing the solve, while the PETSc solver ran 
out of memory while assembling the stiffness matrix. Because the focus of this study was on 
achieving the smallest solve times, the higher memory requirement of PETSc is not a significant 
concern; however, for memory constrained users, the lower memory usage of Hypre may 
become important.
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Figure 5. Parallel performance of various solver – preconditioner combinations with mesh no. 3. Ideal refers to 
the solve time of Hypre – Jacobi assuming 100% parallel efficiency. 

4.2 Direct Solver 

In applications where the coefficient matrix remains constant throughout a simulation, the use of 
direct solvers may become viable. The two primary methods utilized by direct solvers are to 
compute the inverse of the coefficient matrix and perform matrix-vector multiplication or 
compute a factorization of the coefficient matrix and perform back-substitution. The process of 
taking a matrix inverse or performing a complete factorization of a matrix is a resource-intensive 
operation, which scales as O(n3). However, once the inverse or factorization is complete for a 
given matrix, the solution for any given right-hand side vector can be determined quickly.  

To determine the performance of a direct solver, we use MUMPS. In figure 6 we reproduce the 
parallel solve times for mesh no. 2 from figure 4 and add in the solve times for MUMPS. Since 
the factorization time can become prohibitively expensive with increasing system size, we also 
plot the setup time. These results indicate that the direct solver is as much as 60 times faster than 
the Hypre – AMG iterative method. While parallel speed-up is observed with MUMPS, we note 
that the parallel efficiency is worse than for any of the iterative methods. However, even on 64 
PEs, we observe a factor of 20 reduction in solve time compared to Hypre – AMG. 
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Figure 6. Comparison of direct solver with various iterative solver – preconditioner combinations. Both solve time 
and setup time for MUMPS are included. Ideal refers to the solve time of Hypre – AMG assuming 100% 
parallel efficiency. 

To include the high setup costs when comparing MUMPS to Hypre – AMG, we define the 
metric N as the number of solves that need to be performed such that 

 ெܶ௎ெ௉ௌ
௦௘௧௨௣ ൅ ܰ	 ெܶ௎ெ௉ௌ

௦௢௟௩௘ ൏ ܰ	 ஺ܶெீ
௦௢௟௩௘ (7) 

where ெܶ௎ெ௉ௌ
௦௘௧௨௣  is the wall clock time for MUMPS to perform setup and factorization, ெܶ௎ெ௉ௌ

௦௢௟௩௘ 	is 

the wall clock time for MUMPS to perform a solve, and ஺ܶெீ
௦௢௟௩௘	is the wall clock time for Hypre – 

AMG to perform a solve. We ignore the Hypre – AMG setup time as it is small compared to the 
MUMPS setup time and we also assume the solve time is constant from one solve to the next. 
However, we note that including the Hypre – AMG setup time would only lower N, further 
improving the relative performance of MUMPS. The values of N for 1, 8, and 64 PEs are 
included in table 5.The results show that only 10–15 solves are required from MUMPS to 
recuperate the additional setup time. To put these savings of computational cost into perspective, 
we also compute the total wall clock time for Hypre – AMG and MUMPS if N = 1e5, which is 
the target number of timesteps we hope to achieve in FED3 simulations. We find that a one PE 
simulation that will take over 55 days with Hypre – AMG can be completed in less than a day 
with MUMPS. When scaling up to 64 PEs, a 64-h simulation is reduced to 3 h. These results 
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show that utilizing a direct solver such as MUMPS can enable simulation time scales 
unattainable with iterative methods. 

Table 5. Comparison of Hypre – AMG and MUMPS. 

No. of PEs N 
Time for 1e5 Solves (h) 

Hypre – AMG MUMPS 
1 10.89 1327.78 22.36 
8 15.40 166.67 5.02 

64 14.38 63.89 3.06 
 
Despite the benefits of MUMPS observed with mesh no. 2, we found that MUMPS was unable to 
solve mesh no. 3 with any PE count up to 1024 due to memory limitations and setup times that 
went beyond a preset allotted time of 10 h. Simulations with intermediate mesh sizes revealed 
that MUMPS is able to handle approximately three million DOFs while keeping the number of 
DOFs on the order of 1e3–1e4 per PE. Therefore, large-scale simulations still require iterative 
methods. 

 

5. Conclusions 

In this report, we examine the performance of various linear solvers and preconditioners to 
identify the combinations with the shortest wall clock time for large-scale linear systems. Our 
results show that for system sizes of less than three million DOFs, direct solvers perform better 
as long as factorization of the coefficient matrix only needs to be performed once. With system 
sizes beyond three million DOFs, the factorization of a direct solver becomes intractable. For 
large systems, iterative solvers are required. We found that the best performing iterative method 
was the AMG preconditioner packaged in the Hypre library. However, the performance was 
sensitive to the AMG parameters selected. If a parametric study cannot be performed for a given 
system (or similar system), the Block Jacobi preconditioner packaged with the PETSc library 
showed good performance with the default preconditioning setting. The optimized AMG 
parameters determined in this work should be a good starting point for any 3-D linear elastic 
simulations, but transferability to other applications has not yet been studied. The choice of 
solvers and preconditioners can have a significant effect on the time required to solve a linear 
system of equations, and consequently the total simulation time. A number of factors should go 
into the selection of solver – preconditioner combinations including the desired system size, the 
size of the computing resources available, the reusability of preconditioning/factorization, and 
the number of solves to be performed in a given simulation.
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List of Symbols, Abbreviations, and Acronyms 

3-D  three-dimensional  

ANL  Argonne National Laboratory 

ARL  U.S. Army Research Laboratory 

BVP  boundary value problem 

CG  conjugate gradient 

DDD  discrete dislocation dynamics 

DDD-FEM discrete dislocation dynamics-finite element method 

DOD  Department of Defense 

DOF  degree of freedom 

DSRC  DOD Supercomputing Resource Center 

FEM  finite element method 

h  hour 

LLNL  Lawrence Livermore National Laboratory 

MUMPS Multifrontal Massively Parallel Sparse Direct Solver 

PE  processing elements 

PETSc  Portable, Extensible Toolkit for Scientific Computation 

s  second 

SPD  symmetric positive definite 
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